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Conditional probability

Conditional probability: if we know that 𝖡 has occurred, what is the
probability of 𝖠?
Conditioning our analysis on 𝖡 having occurred.

Examples:
▶ What is probability of two states going to war if they are both

democracies?
▶ What is the probability of a judge ruling in a pro-choice direction

conditional on having daughters?
▶ What is the probability that there will be a coup in a country

conditional on having a presidential system?
Conditional probability is the cornerstone of quantitative social
science.
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Conditional Probability definition

Definition: If ℙ(𝖡) > 𝟢 then the conditional probability of 𝖠 given
𝖡, ℙ(𝖠|𝖡) is ?

ℙ(𝖠|𝖡) = ℙ(𝖠∩𝖡)
ℙ(𝖡)

How often both 𝖠 and 𝖡 occur divided by how often 𝖡 occurs.
WARNING! ℙ(𝖠|𝖡) does not, in general, equal ℙ(𝖡|𝖠).

▶ ℙ(smart | in POLI 502) is high
▶ ℙ(in POLI 502 | smart) is low
▶ There are many many smart people out there who are not in this class

(perhaps in other universities or other departments or on the street)!
▶ Also known as the prosecutor’s fallacy
▶ ℙ(innocent | evidence) is not the same as ℙ(evidence | innocent)
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Examples

𝖠 = {you get an A grade}, 𝖡 = {everyone gets an A grade}
If 𝖡 occurs then 𝖠 must also occur, so 𝑃𝑟(𝖠|𝖡) = 𝟣.
Does this mean that 𝑃 𝑟(𝖡|𝖠) = 𝟣 as well?

Now let 𝖠 = {you get a B grade}.
The intersection 𝖠 ∩ 𝖡 = ∅, so that 𝑃𝑟(𝖠|𝖡) = 𝟢.
Intuitively, it’s because 𝖡 occurring precludes 𝖠 from occurring.
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Conditional probabilities are probabilities

Condition probabilities ℙ(𝖠|𝖡) are valid probability functions:
1 ℙ(𝖠|𝖡) ≥ 𝟢
2 ℙ(Ω|𝖡) = 𝟣
3 Addition/Partition rule: If 𝖠𝟣 and 𝖠𝟤 are disjoint, then

ℙ(𝖠1 ∪ 𝖠𝟤|𝖡) = ℙ(𝖠1|𝖡) + ℙ(𝖠𝟤|𝖡)
⇝ rules of probability apply to left-hand side of conditioning bar (𝖠)
All probabilities normalized to event 𝖡, ℙ(𝖡 ∣ 𝖡) = 𝟣.
Not for right-hand side, so even if 𝖡 and 𝖢 are disjoint,
ℙ(𝖠|𝖡 ∪ 𝖢) ≠ ℙ(𝖠|𝖡) + ℙ(𝖠|𝖢)

Howard Liu Probability 2: Conditional Probability 2024-10-10 7 / 24



Joint probabilities from conditional probabilities

Joint probabilities: probability of two events occurring (intersections)

Often replace ∩ with commas: ℙ(𝖠 ∩ 𝖡 ∩ 𝖢) = ℙ(𝖠, 𝖡, 𝖢)

Definition of conditional prob. implies:
ℙ(𝖠 ∩ 𝖡) ≡ ℙ(𝖠, 𝖡) = ℙ(𝖡)ℙ(𝖠 ∣ 𝖡) = ℙ(𝖠)ℙ(𝖡 ∣ 𝖠)
Look at what we defined before for cond. prob., we’re just “moving
parts” in the same equation!

ℙ(𝖠|𝖡) = ℙ(𝖠∩𝖡)
ℙ(𝖡)

Let’s draw a Venn diagram?

What about three events? ℙ(𝖠, 𝖡, 𝖢) = ℙ(𝖠)ℙ(𝖡 ∣ 𝖠)ℙ(𝖢 ∣ 𝖠, 𝖡)
Generalize to the intersection of 𝖭 events: ℙ(𝖠1, …, 𝖠𝑁) =
ℙ(𝖠1)ℙ(𝖠2 ∣ 𝖠1)ℙ(𝖠3 ∣ 𝖠1, 𝖠2)⋯ℙ(𝖠𝑁 ∣ 𝖠1, …, 𝖠𝑁−1)
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Joint probabilities from conditionals, example

Draw three cards at random from a deck without replacement
What’s the probability that we draw three Aces (using cond. prob.)?

ℙ(𝐴𝑐𝑒𝟣∩𝐴𝑐𝑒𝟤∩𝐴𝑐𝑒𝟥) = ℙ(𝐴𝑐𝑒𝟣)ℙ(𝐴𝑐𝑒𝟤 ∣ 𝐴𝑐𝑒𝟣)ℙ(𝐴𝑐𝑒𝟥 ∣ 𝐴𝑐𝑒1∩𝐴𝑐𝑒2)
What are these probabilities?

▶ 4 Aces to pick out of 52 cards ⇝ ℙ(𝐴𝑐𝑒1) = 4
52

▶ 3 Aces left in the 51 remaining cards ⇝ ℙ(𝐴𝑐𝑒2|𝐴𝑐𝑒1) = 3
52

▶ 2 Aces left in the 50 remaining cards ⇝ ℙ(𝐴𝑐𝑒3|𝐴𝑐𝑒2 ∩ 𝐴𝑐𝑒1) = 2
52

Thus, ℙ(𝐴𝑐𝑒1 ∩ 𝐴𝑐𝑒2 ∩ 𝐴𝑐𝑒3) = 4
52 × 3

51 × 2
50
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2. Bayes’ rule
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Bayes’ rule

Reverend Thomas Bayes (1701–61): English minister and statistician
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Bayes’ rule

Recall conditional probability

ℙ(𝖠|𝖡) = ℙ(𝖠∩𝖡)
ℙ(𝖡)

ℙ(𝖠 ∩ 𝖡) = ℙ(𝖠|𝖡) ⋅ ℙ(𝖡) = ℙ(𝐵|𝐴) ⋅ ℙ(𝐴)
Bayes’ rule: if ℙ(𝖡) > 𝟢, then:

ℙ(𝖠|𝖡) = ℙ(𝖠|𝖡)⋅ℙ(𝖡)
ℙ(𝖡) = ℙ(𝐵|𝐴)⋅ℙ(𝐴)

ℙ(𝖡)

We often call ℙ(𝐵) as our prior, and ℙ(𝖠|𝖡) as our data/observations
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Bayes’ rule example

Use the Covid test example
▶ Want to know ℙ(covid | test positive) or ℙ(C | PT)
▶ ℙ(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑐𝑜𝑣𝑖𝑑) = 0.8 true positive rate
▶ ℙ(𝑐𝑜𝑣𝑖𝑑) = 0.007 rough prevalance of active Covid cases
▶ ℙ(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 0.011 rough prevalance of active Covid cases

ℙ(𝑐𝑜𝑣𝑖𝑑|𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =

ℙ(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑐𝑜𝑣𝑖𝑑)⋅ℙ(𝑐𝑜𝑣𝑖𝑑)
ℙ(𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

ℙ(𝐶|𝑃𝑇 ) = ℙ(𝑃𝑇 |𝐶)⋅ℙ(𝐶)
ℙ(𝑃𝑇 ) = 0.8⋅0.007

0.011 = 0.53
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More general version of Bayes Theorum

Suppose X and 𝜃 are two continuous random variables.
▶ 𝜃 corresponds to the unobserved effects 𝐸′𝑠
▶ X corresponds to the observed outcome 𝐹 (or data)

We have avaiable two pieces of information:
▶ The marginal p.d.f of 𝜃, 𝜉(𝜃), corresponding to ℙ(𝐸𝑖)
▶ The conditional p.d.f of X given 𝜃, 𝑓(𝑥|𝜃), corresponding to ℙ(𝐹 |𝐸𝑖)
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More general version of Bayes Theorum

The joint p.d.f. of X and 𝜃
𝑓(𝑥, 𝜃) = 𝜉(𝜃|𝑥)𝑓𝑥(𝑥) (1)

From this, we get that for x such that 𝑓𝑥(𝑥) > 0
𝜉(𝜃|𝑥) = 𝑓(𝑥,𝜃)

𝑓𝑥(𝑥) = 𝑓(𝑥|𝜃)𝜉(𝜃)
𝑓𝑥(𝑥) (2)

Since this is a p.d.f., it must integrate to 1. That is,

∫∞
−∞

𝑓(𝑥|𝑢)𝜉(𝜃)𝑑𝑢
𝑓𝑥(𝑥) = 1 (3)

Therefore, we have

𝑓𝑥(𝑥) = ∫∞
−∞ 𝑓(𝑥|𝑢)𝜉(𝜃)𝑑𝑢 (4)

Now, plug in what you have in the equation 2

𝜉(𝜃|𝑥) = 𝑓(𝑥|𝜃)𝜉(𝜃)
∫∞
−∞ 𝑓(𝑥|𝑢)𝜉(𝜃)𝑑𝑢 (5)
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More general version of Bayes Theorum

The denominator is only a normalizing constant so that the density in
𝜃 integrates to 1.
We can simply the equation (5) to this:

𝜉(𝜃|𝑥)⏟
posterior dist.

∝ 𝑓(𝑥|𝜃)⏟
data, given Likelihood

𝜉(𝜃)⏟
prior dist.

(6)

𝜉(𝜃|𝑑𝑎𝑡𝑎)⏟
posterior dist

∝ 𝑓(𝑑𝑎𝑡𝑎|𝜃)⏟⏟⏟⏟⏟
data

𝜉(𝜃)⏟
prior dist

(7)
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More general version of Bayes Theorum
Random draws of 𝜉(𝜃|𝑥) are done by MCMC (Monte Carlo Markov
Chain) iterations in Bayesian models
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More general version of Bayes Theorum

* If you’re interested in this process, watch this intro to Bayes stats video
from 2:40 → YouTube link
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https://www.youtube.com/watch?v=OTO1DygELpY&t=206s


Frequentist vs. Bayesian Hypothesis Testing
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Why Should I learn Bayesian statistics
It allows us to acquire information on the strength of evidence for
our results. We don’t get this information with the p-value point
estimate. Such information is highly valuable in research.

Advantages
▶ More intuitive
▶ Gives you a range between which you can be certain for or against your

hypotheses rather than a point-estimate
▶ All information is contained within the data itself as opposed to

unobserved frequencies
▶ Calculates the probability distribution of the hypotheses

Disadvantages
▶ Setting the prior probabilities of the hypothesis can be different values

because they’re subjective, thus making them appear arbitrary
▶ Bayesian analyses are complex and can require advanced statistical

packages and software
▶ Require more advanced statistical knowledge and computing power
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3. Independence
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Independence

Heart of Bayes’s rule: knowing 𝖡 occurs often changes probability of
𝖠.

▶ What if 𝖡 provides no information? ⇝ independence
Two events 𝖠 and 𝖡 are independent if ℙ(𝖠 ∩ 𝖡) =

ℙ(𝖠)ℙ(𝖡)
Sometimes written as 𝖠 ⟂⟂ 𝖡
Symmetric: 𝖠 ⟂⟂ 𝖡 equivalent to 𝖡 ⟂⟂ 𝖠
Important consequence: if 𝖠 ⟂⟂ 𝖡 and ℙ(𝖡) > 𝟢 then:

ℙ(𝖠|𝖡) = ℙ(𝖠∩𝖡)
ℙ(𝖡) = ℙ(𝖠)ℙ(𝖡)

ℙ(𝖡) = ℙ(𝖠)
Knowing 𝖡 occurs has no impact on the probability of 𝖠.
Works other way too: if 𝖯(𝖠) > 𝟢 and 𝖠 ⟂⟂ 𝖡⇝ ℙ(𝖡 ∣ 𝖠) = ℙ(𝖡)
Common misunderstanding: independent is different than disjoint!

Mutually exclusive events provide information
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Independence and random sampling

How we draw the random sample matters:
▶ Sample 𝗇 > 𝟣 with replacement ⇝ independent events
▶ Sample 𝗇 > 𝟣 without replacement ⇝ dependent events

Sampling with replacement 𝗇 for gathering:

ℙ(𝐴𝑛) = ℙ(𝐴1 ∩ ⋯ ∩ 𝐴𝑛) = ℙ(𝐴1) ⋅ ℙ(𝐴2)⋯ℙ(𝐴𝑛)
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Conditional independence

𝖠 and 𝖡 are conditionally independent given 𝖤 if
ℙ(𝖠 ∩ 𝖡 ∣ 𝖤) = ℙ(𝖠 ∣ 𝖤)ℙ(𝖡 ∣ 𝖤)
Massively important in statistics and causal inference.

Warning: independence ≠ conditional independence.
▶ Cond. ind. ⇏ ind.: flipping a coin with unknown bias.
▶ Ind. ⇏ cond. ind.: test scores, athletics, and college admission.

You will learn later on why the assumption of independence among
observations matters and why it is not okay we constantly violate this
assumption.
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