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Probability

What is a reasonably safe gathering size in the age of COVID?
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Probability and assumptions

If we have a gathering of size n drawn randomly from population of
SC, what’s the probability someone in attendance is infected?

▶ Imagine current incidence rate of COVID in SC: 1.37%
▶ Will we get 1.37% from our samples?

Calculating probabilities relies on assumptions
▶ Gathering is a random sample from population
▶ Covid outbreaks are equally likely across all counties
▶ One county’s outbreak likelihood is independent of one another
▶ Wrong assumptions ⇝ wrong probabilities

Why do we care? Enables learning from data!
▶ Are the data consistent with the probabilities in theory?
▶ If not, casts doubt on our assumptions ⇝ we’ve learned something!
▶ The heart of statistical inference
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Conjunction fallacy

Why mathematical probability?
▶ Because our intuitions about probability are often terrible

Example
Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations

What is more probable?
1 Linda is a bank teller?
2 Linda is a bank teller and is active in the feminist movement?
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Conjunction fallacy

Famous example of the conjunction fallacy called the Linda problem
▶ Majority of respondents chose 2, but this is impossible!

Learning mathematical probability avoids these mistakes!
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Learning about populations

Probability: formalize the uncertainty about how our data came to
be.
Inference: learning about the population from a set of data.
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Roadmap

1 Naive Definition of Probability
2 Non-naive Definition of Probability
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1. Naive Definition of Probability
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Sample spaces & events

Probability formalizes chance variation or uncertainty in outcomes.
▶ It might rain or be sunny tomorrow, we don’t know which.
▶ To formalize, we need to define the set of possible outcomes.

A sample space Ω is the set of possible outcomes.
▶ Can be finite, countably infinite, or uncountably infinite.

𝜔 ∈ Ω is one particular outcome.
A subset of Ω is an event and we write this as 𝐴 ⊂ Ω

Howard Liu Probability 1: The Basic 2024-09-25 9 / 17



Sample spaces & events

Probability formalizes chance variation or uncertainty in outcomes.
▶ It might rain or be sunny tomorrow, we don’t know which.
▶ To formalize, we need to define the set of possible outcomes.

A sample space Ω is the set of possible outcomes.
▶ Can be finite, countably infinite, or uncountably infinite.

𝜔 ∈ Ω is one particular outcome.
A subset of Ω is an event and we write this as 𝐴 ⊂ Ω

Howard Liu Probability 1: The Basic 2024-09-25 9 / 17



Naive definition of probability

Naive definition of probability: all outcomes equally likely, so:

𝑃(𝐴) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 Ω

Often wrong, why?

Often wrong, but justified under a few assumptions:
▶ Symmetry: fair coin, shuffled cards, dice, etc.
▶ Simple random sample from a population.

Example: randomly select a card from a standard deck of playing
cards

▶ Each of the 52 card has equal probability

𝑃(10♣) = 𝑃 (8♡) = 1
52
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Counting

Multiplication rule: if you have two sub-experiments, A with a
possible outcomes and B with b possible outcomes, then in the
combined experiment there are ab possible outcomes.

Example: what to watch and where to watch?
▶ What to watch? Netflix or Hulu.
▶ Where to watch? TV, tablet, or phone.

▶ 𝟤 × 𝟥 = 6 possible outcomes (Netflix on TV, Hulu on phone, …)

Assumes number of outcomes in one experiment does not depend on
the outcome of the other experiment → big assumption, often wrong
in real world
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Sampling objects
Sample with replacement: Choose 𝗄 objects from a set of 𝗇, one at
a time with replacement.

▶ Any object may be selected multiple times
▶ For example: Ω = {𝑎, 𝑏, 𝑐, 𝑑}, and you choose 𝗄 = 1 object and order

matters. How many possible outcomes are there?

Ans:4
▶ What if you can choose 𝗄 = 2 objects. How many possible outcomes

are there? Ans:4x4
▶ There are 𝑛𝑘 possible outcomes when order matters (multiplication

rule)
Sampling without replacement: Choose 𝗄 objects from a set of 𝗇
one at a time without replacement.

▶ Chosen object can’t be chosen again.
▶ Number of possible outcomes? 𝗇(𝗇 − 𝟣)⋯(𝗇 − 𝗄 + 𝟣)

Ex: 2024 best grad student paper awards has 11 candidates. How
many top-3 award possibilities?

▶ 11 first-place choices
▶ 10 second-place choices among the remaining candidates
▶ 9 third-place choices
▶ Total: 𝟣𝟣 ⋅ 𝟣𝟢 ⋅ 𝟫 = 𝟫𝟫𝟢 possibilities
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2. Non-Naive Definition of Probability
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Probability

A probability space consists of:
▶ Sample space Ω
▶ Probability function ℙ mapping events 𝖠 ⊆ Ω onto the real line.

The function ℙ must satisfy the following axioms:
1 (Non-negativity) ℙ(𝖠) ≥ 𝟢 for every event �
2 (Normalization) ℙ(Ω) = 𝟣
3 (Additivity) If a series of events, 𝖠1, 𝖠𝟤, …, are disjoint, then
▶ Events A and B are disjoint if their intersection is zero: 𝑃(𝐴 ∩ 𝐵) = 0
▶ E.g. being early to class and being late to the same class

ℙ(∪∞
𝑛=1𝐴𝑖) = ∑∞

𝑖=1 ℙ(𝐴𝑖)
Union of mutually exclusive events ⇝ use additivity
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Interpretation of probabilities

How do we interpret ℙ(𝖠)? Huge debate about this in stats literature
1 Frequentist: ℙ() reflect relative frequency in a large number of trials.
▶ Repeat a coin flip many times�frequency of head ≈ 0.5

2 Bayesian: ℙ() are subjective beliefs about outcomes
▶ How likely I think a particular event will be

Both viewpoints are helpful in different contexts
▶ Properties of probabilities exactly the same in either approach
▶ This class: focus on frequentist perspectives. But we will talk a bit

about Bayes next week, so you know how it works given that it’s
becoming more popular.
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Gambling 101

What’s the probability of selecting a 8 card from a well-shuffled deck?
▶ “Well-shuffled” ⇝ “randomly selected” ⇝ all cards have a chance

“8 card” event = {8♣ ∪ 8♠ ∪ 8♡ ∪ 8♢}
Union of mutually exclusive events ⇝ use additivity

ℙ (a 8 card) = ℙ(8♣) + ℙ(8♠) + ℙ(8♡) + ℙ(8♢) = 4
52
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Some properties of probabilities (refresher)

1 ℙ(𝖠′) = 𝟣 − ℙ(𝖠)
Probability of not 𝖠 is 1 minus the probability of 𝖠.
Follows from 𝖠 ∪ 𝖠′ = Ω and 𝟣 = ℙ(Ω) = ℙ(𝖠) + ℙ(𝖠′)

2 If 𝖠 ⊂ 𝖡, then ℙ(𝖠) ≤ ℙ(𝖡)
Subsets of events have lower probability than the event.

3 ℙ(𝖠 ∪ 𝖡) = ℙ(𝖠) + ℙ(𝖡) − ℙ(𝖠 ∩ 𝖡)
Avoid “double-counting” the part where 𝖠 and 𝖡 overlap.
Inclusion-exclusion

Howard Liu Probability 1: The Basic 2024-09-25 17 / 17



Some properties of probabilities (refresher)

1 ℙ(𝖠′) = 𝟣 − ℙ(𝖠)
Probability of not 𝖠 is 1 minus the probability of 𝖠.
Follows from 𝖠 ∪ 𝖠′ = Ω and 𝟣 = ℙ(Ω) = ℙ(𝖠) + ℙ(𝖠′)

2 If 𝖠 ⊂ 𝖡, then ℙ(𝖠) ≤ ℙ(𝖡)
Subsets of events have lower probability than the event.

3 ℙ(𝖠 ∪ 𝖡) = ℙ(𝖠) + ℙ(𝖡) − ℙ(𝖠 ∩ 𝖡)
Avoid “double-counting” the part where 𝖠 and 𝖡 overlap.
Inclusion-exclusion

Howard Liu Probability 1: The Basic 2024-09-25 17 / 17



Some properties of probabilities (refresher)

1 ℙ(𝖠′) = 𝟣 − ℙ(𝖠)
Probability of not 𝖠 is 1 minus the probability of 𝖠.
Follows from 𝖠 ∪ 𝖠′ = Ω and 𝟣 = ℙ(Ω) = ℙ(𝖠) + ℙ(𝖠′)

2 If 𝖠 ⊂ 𝖡, then ℙ(𝖠) ≤ ℙ(𝖡)
Subsets of events have lower probability than the event.

3 ℙ(𝖠 ∪ 𝖡) = ℙ(𝖠) + ℙ(𝖡) − ℙ(𝖠 ∩ 𝖡)
Avoid “double-counting” the part where 𝖠 and 𝖡 overlap.
Inclusion-exclusion

Howard Liu Probability 1: The Basic 2024-09-25 17 / 17


