
The Fundamentals of Political 
Science Research, 3rd edition

Chapter 7: Probability and Statistical Inference

(Variable: Point Estimate and the Uncertainty)
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Before we move on…
Bayesian Inference Recap

2

• Q: What do these equations and graphs tell us about Bayesian inference?
• Q: how do you estimate a parameter?
• Q: how do you build a credible interval? 

• Q: The difference between Bayesian and Frequentist Inference?  



Before we move on…
Bayesian Inference Recap
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• Q: What do these equations and graphs tell us about Bayesian inference?
• Q: how do you estimate a parameter? MCMC (interaction between data 

and prior)
• Q: how do you build a credible interval? MCMC

• Q: The difference between Bayesian and Frequentist Inference?  



Populations versus samples

• We’ve learned how to describe your data: 
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Populations versus samples

• We’ve learned how to describe your data: 

• Central tendency: mean

• Dispersion: standard deviation

• What kind of data you have?

• Population: data for every possible relevant case 
(e.g., civil war cases)

• War is relatively rare events: we may have 
the population to study

• Sample: a subset of population

• Public opinion polls
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Statistical inference (recap)

• Sample → population

• Statistical inference is the process of making probabilistic statements about 
a population characteristic based on our knowledge of the sample 
characteristic.

• In other words, there are things we know about with certainty—like the 
mean of some variable in our sample. But we care about the likely values of 
that variable in the entire population. 

• Since we sometimes don’t have data for an entire population, we need to 
use what we know to “infer” the likely range of values in the population.

• Central Limit Theorem? (Core in the frequentist inference)
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• The central limit theorem states that if you have a 
population with mean μ and standard deviation σ and take 
sufficiently large random samples from the population with 
replacement, then the distribution of the sample means 
will be approximately normally distributed.

• Normally distributed sample mean:
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• The central limit theorem states that if you have a 
population with mean μ and standard deviation σ and take 
sufficiently large random samples from the population with 
replacement, then the distribution of the sample means 
will be approximately normally distributed.

• Normally distributed sample mean:
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Central Limit Theorem



The normal distribution

• The Central Limit Theorem will invoke a particular kind of 
distribution called the normal distribution, with which most 
of you are casually familiar. It's also called a bell-shaped 
distribution. But it has some unique features.
• The distribution is symmetrical, so that the mode, median, and 

mean are all equal.
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The normal distribution

• The Central Limit Theorem will invoke a particular kind of 
distribution called the normal distribution, with which most 
of you are casually familiar. It's also called a bell-shaped 
distribution. But it has some unique features.
• The distribution is symmetrical, so that the mode, median, and 

mean are all equal.

• A particularly useful property: if a distribution is normally shaped, 
we know a certain % of cases fall within a certain distance of the 
mean.
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The normal distribution

• The Central Limit Theorem will invoke a particular kind of 
distribution called the normal distribution, with which most 
of you are casually familiar. It's also called a bell-shaped 
distribution. But it has some unique features.
• The distribution is symmetrical, so that the mode, median, and 

mean are all equal.

• A particularly useful property: if a distribution is normally shaped, 
we know a certain % of cases fall within a certain distance of the 
mean 

• → helps build the concept of confidence intervals!
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It looks like this
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The 68 - 95 - 99 rule

Standard Deviation Away from Mean

D
en

si
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Normal Distribution Property

• The normal distribution is symmetric, bell shaped, and 
characterized by its mean μ and standard deviation σ. 

• The probability range
• 1 standard deviation → 68 % of data

• 2 standard deviations (1.96 SD to be precise)→ 95 % of data

• 3 standard deviations → 99% of the data
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Are all distributions normal?
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Are all distributions normal?

• NO!

• A frequency distribution is just a distribution of scores 
• like your scores on the midterm, or the distribution of income in 

Nebraska

• Most frequency distributions are not normally shaped.
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But…

• Even if a frequency distribution is not normally shaped, if we 
imagine a (hypothetical) world in which we took an infinite 
(N) number of samples, and took the mean of each sample, 
and then plotted those means, then how would those 
plotted means be distributed?
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But…

• Even if a frequency distribution is not normally shaped, if we 
imagine a (hypothetical) world in which we took an infinite 
(N) number of samples, and took the mean of each sample, 
and then plotted those means, then how would those 
plotted means be distributed?
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An example

• Imagine that we rolled a fair six-sided dice. It can come out as 
a 1, 2, 3, 4, 5 or 6 with equal probability, right?

• Let's say you rolled that dice 600 times (one sample/game). 
What would that distribution “look like"?
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A uniform (not normal) 
distribution
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But that was not normal
• That's not normal, right?
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But that was not normal
• That's not normal, right?

• Let's say we rolled that dice 600 times. What do you think the 
mean would be (about)?
• Would it be exactly 3.5? Every time? No, of course not.

• But what would happen if we did that roll-it-600-times thing, 
say, a billion times (N), then plotted the means? 
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But that was not normal
• That's not normal, right?

• Let's say we rolled that dice 600 times. What do you think the 
mean would be (about)?
• Would it be exactly 3.5? Every time? No, of course not.

• But what would happen if we did that roll-it-600-times thing, 
say, a billion times (N), then plotted the means? 
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This is the Central Limit 
Theorem

• The Central Limit Theorem says that, no matter what the 
underlying shape of the frequency distribution (whether it's 
uniform, normal, or whatever), the hypothetical distribution of 
sample means--which is called a sampling distribution--will be 
normal, with mean equal to the true population mean, and 
standard deviation equal to

The above is called the standard error of the mean, or 
standard error

Standard error

Sample standard deviation

Sqrt of the sample size
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Normal Distribution and Confidence level

• So in the situation where we only have the sample mean, what 
we know is that if we do this random sampling exercise N times, 
our sampling distribution will have a normal distribution

• Key! With a normal distribution, we can invoke the 68-95-99 rule 
to create a confidence level about the likely location of the 
population mean (true mean)
• For example, we have a sample mean μ = 3.47 and σ = 0.07

• By extending the coverage to 2 standard errors from the mean, 3.47 ± (2 x 
0.07) = [3.33, 3.61]

• We can say that we are 95% confident that the true mean will be located 
in [3.33, 3.61]; 99% confident that the true mean will be in [3.26, 3.68]
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Example: A polling result from 
September 2017

• Between September 14 and 18, 2017, NBC News and the 
Wall Street Journal sponsored a survey in which 900 
randomly selected adult American citizens were interviewed 
about their political beliefs. Among the questions they were 
asked was the following item intended to tap into a 
respondent’s evaluation of the president’s job performance:

• Q: In general, do you approve or disapprove of the job 
Donald Trump is doing as president?
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The results

• In mid September, 2017, 43% of the sample approved of 
Trump's job performance, 52% disapproved, and 5% were 
unsure.

• We're only interested in the opinions of those 900 Americans 
who happened to be in the sample insofar as they tell us 
something about the adult population as a whole. But we can 
use these 900 responses to do precisely that, using the logic 
of the central limit theorem.
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What we know with certainty 
about “the sample” (900 Americans, 1 draw)

Sample SD: We calculate the sample standard 
deviation, in the following way:

Sample mean: We calculate our sample mean, as 
follows:
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What about the population as a whole?
• Obviously, unlike the sample mean, the population mean cannot 

be known with certainty. But if we imagine that, instead of one 
sample of 900 respondents, we had an infinite number of samples 
of 900, then the central limit theorem tells us that those sample 
means would be distributed normally. 

• Point estimate: Our best guess of the population mean, of course, 
is 0.43, because it is our sample mean. 

• Uncertainty: The standard error of the mean (SEM) is (based on 
the CLT):

which is our measure of “uncertainty about the population mean”
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Creating a confidence interval

• If we use the rule of thumb and calculate the 95% confidence 
interval using two standard errors in either direction from the 
sample mean, we are left with the following interval:

or between [0.398, 0.462], which translates into being 95% confident that the
population value of Trump approval during September 14-18, 2017 was between
39.8% and 46.2%.
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Those plus-or-minus figures

• This is where the “plus-or-minus" figures that we always see 
in public opinion polls come from.

• The best guess for the population mean value is the sample 
mean value, plus or minus 2 standard errors.

• So the plus-or-minus figures we are accustomed to seeing are 
built, typically, on the 95% interval.
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“Random” samples vs. samples of 
convenience

• The central limit theorem only applies to samples that are 
selected randomly. With a sample of convenience, by 
contrast, we cannot invoke the central limit theorem to 
construct a sampling distribution and create a confidence 
interval.

• What happens if we have a sample of convenience? 
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“Random” samples vs. samples of 
convenience

• The central limit theorem only applies to samples that are selected 
randomly. With a sample of convenience, by contrast, we cannot 
invoke the central limit theorem to construct a sampling 
distribution and create a confidence interval.

• What happens if we have a sample of convenience? 

• A non-randomly selected sample of convenience does very little to 
help us build bridges between the sample and the population 
about which we want to learn. What do such “surveys" say about 
the population as a whole? Because their samples are clearly not 
random samples of the underlying population, the answer is 
“nothing."

33



How much does sample 
“size” matter?
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How much does sample 
“size” matter?

• As the formula for the confidence interval indicates, the 
smaller the standard errors, the “tighter" our resulting 
confidence intervals will be, and larger standard errors will 
produce “wider" confidence intervals.

• If we are interested in estimating population values, based 
on our samples, with as much precision as possible, then it 
is desirable to have tighter instead of wider confidence 
intervals.
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Some comparisons

• Instead of having our sample of 900, suppose we had 
2,500 people. Then our standard errors would have 
been:

Consider the opposite case. If the sample were 400, then:

which, when doubled to get our 95% confidence interval, would leave
a plus-or-minus 0.048 (or nearly 4.8%) in each direction.
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