Week N: Forecast Modeling POLI502

Howard Liu

2024

University of South Carolina

502 | Week N 1 / 30

• Why do we make prediction/forecast?

• Examples of actual research from civil war studies

• Evaluating forecasting results

.

Two mindsets: causation vs. prediction

- Causal questions:
 - RQ: Why do governments kill civilians in civil war?

502 | Week N 3 / 30

- Causal questions:
 - RQ: Why do governments kill civilians in civil war?
 - $\bullet\,$ Theory: a causal argument (x \rightarrow y), information \rightarrow violence

- Causal questions:
 - RQ: Why do governments kill civilians in civil war?
 - $\bullet\,$ Theory: a causal argument (x \rightarrow y), information \rightarrow violence
 - Covariates: Only one variable matters

- Causal questions:
 - RQ: Why do governments kill civilians in civil war?
 - Theory: a causal argument (x \rightarrow y), information \rightarrow violence
 - Covariates: Only one variable matters
 - Methodology: causal identification strategy \rightarrow causal inference in observational data or experimental studies

- Prediction questions (kinda like AI questions):
 - RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)

- Prediction questions (kinda like AI questions):
 - RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)
 - DoD cares a ton about this.

.

- Prediction questions (kinda like AI questions):
 - RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)
 - DoD cares a ton about this.
 - RQ: How well can we predict civilian killing/casualties by governments in civil war?

• Prediction questions (kinda like AI questions):

(Why predict?)

- RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)
 - DoD cares a ton about this.
- RQ: How well can we predict civilian killing/casualties by governments in civil war?
 - DoD cares a ton about this.

• Prediction questions (kinda like AI questions):

(Why predict?)

- RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)
 - DoD cares a ton about this.
- RQ: How well can we predict civilian killing/casualties by governments in civil war?
 - DoD cares a ton about this.
- Accuracy: we want precision in prediction
- Covariates: all of them matter
- Method: regression, machine learning algorithms
- Are prediction & causation not compatible?

• Prediction questions (kinda like AI questions):

(Why predict?)

- RQ: Can we **predict** civilian killing/casualties by governments in civil war? (So that we can prevent it)
 - DoD cares a ton about this.
- RQ: How well can we predict civilian killing/casualties by governments in civil war?
 - DoD cares a ton about this.
- Accuracy: we want precision in prediction
- Covariates: all of them matter
- Method: regression, machine learning algorithms
- Are prediction & causation not compatible?
 - They are. While they have different goals, both can be useful.

.

Prediction & forecasting

Improve previous models' predictive ability

- Procedure: models give us predicted values of \hat{Y} in-sample, and we would like our predictions to be accurate in **out-of-sample** setting
- For a usual causal story research, prediction helps evaluate a new variable (x) introduced by theory
- For a methodology research, people propose an alternative *model* that has a better forecasting ability than existing models
- One of the most important tasks in social (data) science

Evaluating forecast

Ways to evaluate forecasts of binary outcomes

- Percentage correctly predicted
- 2 ROC curve & AUC (Area Under the ROC Curve)
- Separation Plot

.

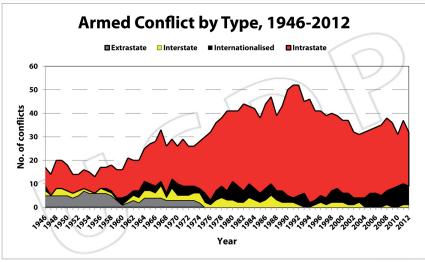
Precision-recall curve

Example: civil war research

Inter-state wars are on the decline since WWII
 No wars between great powers since Korean War (1950–53)

• Intra-state wars (civil wars) have been on the rise

• In the past 20 years, the number and quality of *intra*-war research have gone up



James Fearon & David Laitin (2003) "Ethnicity, Insurgency, and Civil War." *APSR*

James Fearon & David Laitin (2003) "Ethnicity, Insurgency, and Civil War." *APSR*

RQ: Why do civil wars occur?

James Fearon & David Laitin (2003) "Ethnicity, Insurgency, and Civil War." *APSR*

RQ: Why do civil wars occur?

Previous answers

• The prevalence of civil wars in the 1990s is due to the end of the Cold War

James Fearon & David Laitin (2003) "Ethnicity, Insurgency, and Civil War." *APSR*

RQ: Why do civil wars occur?

Previous answers

- The prevalence of civil wars in the 1990s is due to the end of the Cold War
- Ethnic, religious, or cultural diversity is the root cause of civil wars

= Ethnic or political grievances (state oppression and discrimination) cause civil wars

Fearon & Laitin's (2003) argument

.

502 | Week N 10 / 30

Fearon & Laitin's (2003) argument

- Civil wars are best understood as insurgency
- Insurgency = a technology of military conflict characterized by small, lightly armed bands practicing guerrilla warfare from rural base areas

.

Fearon & Laitin (2003)

Previous argument:

• Ethnic or political grievances (state oppression and discrimination) causes civil wars

Previous argument:

- Ethnic or political grievances (state oppression and discrimination) causes civil wars
- If this were true,
 - variables such as *ethnic fractionalization*, *religious fractionalization*, and *democracy* should be a strong predictor of civil wars

.

Fearon & Laitin (2003)

What are the observable conditions that favor insurgency?

What are the observable conditions that favor insurgency?

- Weak government:
 - Rebels can easily launch insurgency

.

What are the observable conditions that favor insurgency?

- Weak government:
 - Rebels can easily launch insurgency

.

• Rough (mountainous) terrain

What are the observable conditions that favor insurgency?

- Weak government:
 - Rebels can easily launch insurgency

.

- Rough (mountainous) terrain
- Large population

Why predict?		Evaluating forecasts	
	Civil War	Ethnic War	Civil War
Prior war	-0.954***	-0.935**	-0.916***
	(0.314)	(0.367)	(0.312)
Per capita income	-0.344* ^{***}	-0.344* ^{***}	-0.318* ^{**}
-	(0.072)	(0.088)	(0.071)
log(population)	0.263***	0.378***	0.272***
	(0.073)	(0.085)	(0.074)
log(% mountanious)	0.219****	0.163	0.199* [*]
	(0.085)	(0.106)	(0.085)
Noncontiguous state	0.443	0.420	0.426
	(0.274)	(0.327)	(0.272)
Oil exporter	0.858***	1.046****	0.751***
	(0.279)	(0.325)	(0.278)
New state	1.709***	1.793****	1.658***
	(0.339)	(0.393)	(0.342)
Instability	0.618***	0.462	0.513**
	(0.235)	(0.296)	(0.242)
Democracy	0.021	0.022	. ,
	(0.017)	(0.021)	
Ethnic fractionalization	0.166	0.705	0.164
	(0.373)	(0.466)	(0.368)
Religious fractionalization	0.285	1.452**	0.326
	(0.509)	(0.648)	(0.506)
Anocracy			0.521**
			(0.237)
Democracy Constant			0.127
			(0.304)
	-6.731^{***}	-8.864***	-7.019***
	(0.736)	(0.924)	(0.751)
Observations	6,327	6,327	6,327
Log Likelihood	-480.402	-338.791	-478.671
Akaike Inf. Crit.	984.803	701.582	983.342
Note:	$^{*}p{<}0.1;$ $^{**}p{<}0.05;$ $^{***}p{<}0.01$		

.

Outline

502 | Week N 13 / 30

 F & L's ''favorite'' variables are significant and in the expected direction

- Rough terrain (positive)
- Population (positive)
- Per capita GDP (negative)

Variables suggested by the conventional wisdom are insignificant

- Ethnic fractionalization
- Religious fractionalization
- Democracy

(Note: They could have done more to illustrate substantive effects by plotting the marginal effects)

Broader policy implications:

• "Longstanding hatred" between different ethnic groups is not really the root cause of civil wars

Broader policy implications:

- "Longstanding hatred" between different ethnic groups is not really the root cause of civil wars
- Democratization is not a solution

Criticisms

• Per capita GDP as a proxy measure of weak government?

Criticisms

• Per capita GDP as a proxy measure of weak government?

• Ethnic fractionalization as a measure of grievance?

Criticisms

• Per capita GDP as a proxy measure of weak government?

• Ethnic fractionalization as a measure of grievance?

• Forecasting ability (Ward, Greenhill, & Bakke 2010): Out-of-sample forecast

Steps to generate out-of-sample prediction

- In-sample prediction: use all your data
- Out-of-sample prediction: use some data to build your model, and evaluate prediction using the remaining

Steps to generate out-of-sample prediction

- Traditional way (80-20): 80% data to train the model (in-sample stage), 20% data to test the model (out-of-sample)
- Modern way: Randomly subset data into k-fold, and use 4/5 of the data to train and 1/5 data to test, and repeat this process N times (Cross Validation)

How well do models correctly predict civil war onset?

- Predicted values \hat{P} : 0.001, 0.201, 0.84, 0.335, 0.659, ...
- Actual outcomes Y: 0, 1, 0, 0, 1, 1, ...

How well do models correctly predict civil war onset?

- Predicted values \hat{P} : 0.001, 0.201, 0.84, 0.335, 0.659, ...
- Actual outcomes Y: 0, 1, 0, 0, 1, 1, ...

•
$$\hat{P}>$$
 threshold (e.g., 0.5) $\rightsquigarrow \hat{Y}=1$

•
$$\hat{P} \leq \text{threshold} \rightsquigarrow \hat{Y} = 0$$

Create a cross-tabulation of actual outcomes against predicted outcomes

	Y = 0	Y = 1	total
$\hat{Y} = 0$	30	21	51
$\hat{Y}=1$	5	19	24
total	35	40	75

- True positive (19), true negative (30), false positive (5), and false negative (21)
- Correctly predicted = 30 + 19
- Incorrectly predicted = 21 + 5
- Percentage correctly predicted = (30+19) / (30+19+21+5) = 0.653 = 65%

Evaluating forecasts

.

1. Percentage correctly predicted

Pro:

Intuitive

Cons:

- Problematic with rare events (such as conflict): Easy to predict 0s, but not 1s
- Sensitive to threshold

502 | Week N 21 / 30

.

1. Percentage correctly predicted

In R, we can easily obtain this using the hitmiss function (in the pscl package)

```
> library(pscl)
> hitmiss(mod1)
Classification Threshold = 0.5
    y=0 y=1
yhat=0 6221 106
yhat=1 0 0
Percent Correctly Predicted = 98.32%
Percent Correctly Predicted = 100%, for y = 0
Percent Correctly Predicted = 0% for y = 1
Null Model Correctly Predicts 98.32%
[1] 98.32464 100.00000 0.00000
```

- Null model = a model that predicts "All zero"
- Fearon & Laitin's (2003) model performs no better than the null model (with 0.5 as threshold)


```
> hitmiss(mod1, k = 0.4)
Classification Threshold = 0.4
    y=0 y=1
yhat=0 6220 105
yhat=1 1 1
Percent Correctly Predicted = 98.32%
Percent Correctly Predicted = 99.98%, for y = 0
Percent Correctly Predicted = 0.9434% for y = 1
Null Model Correctly Predicts 98.32%
[1] 98.3246404 99.9839254 0.9433962
```

- more true positives;
- more false positives;
- lower percentage correctly predicted.


```
> hitmiss(mod1, k = 0.3)
Classification Threshold = 0.3
    y=0 y=1
yhat=0 6220 105
yhat=1 1 1
Percent Correctly Predicted = 98.32%
Percent Correctly Predicted = 99.98%, for y = 0
Percent Correctly Predicted = 0.9434% for y = 1
Null Model Correctly Predicts 98.32%
[1] 98.3246404 99.9839254 0.9433962
```

- more true positives;
- more false positives;
- lower percentage correctly predicted.


```
> hitmiss(mod1, k = 0.2)
Classification Threshold = 0.2
    y=0 y=1
yhat=0 6216 102
yhat=1 5 4
Percent Correctly Predicted = 98.31%
Percent Correctly Predicted = 99.92%, for y = 0
Percent Correctly Predicted = 3.774% for y = 1
Null Model Correctly Predicts 98.32%
[1] 98.308835 99.919627 3.773585
>
```

- more true positives;
- more false positives;
- lower percentage correctly predicted.


```
> hitmiss(mod1, k = 0.1)
Classification Threshold = 0.1
    y=0 y=1
yhat=0 6144 90
yhat=1 77 16
Percent Correctly Predicted = 97.36%
Percent Correctly Predicted = 98.76%, for y = 0
Percent Correctly Predicted = 15.09% for y = 1
Null Model Correctly Predicts 98.32%
[1] 97.36052 98.76226 15.09434
```

- more true positives;
- more false positives;
- lower percentage correctly predicted.


```
> hitmiss(mod1, k = 0.05)
Classification Threshold = 0.05
    y=0 y=1
yhat=0 5937 77
yhat=1 284 29
Percent Correctly Predicted = 94.29%
Percent Correctly Predicted = 95.43%, for y = 0
Percent Correctly Predicted = 27.36% for y = 1
Null Model Correctly Predicts 98.32%
[1] 94.29429 95.43482 27.35849
```

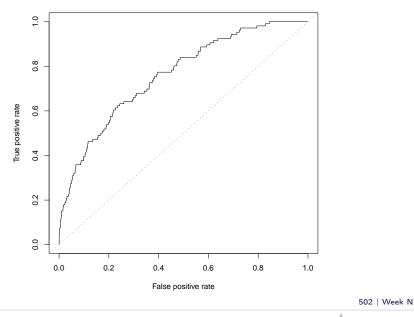
- more true positives;
- more false positives;
- lower percentage correctly predicted.

2. ROC (receiver operating characteristic) Curve

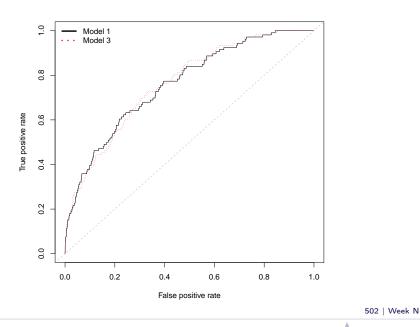
- True positive rate vs false positive rate for different thresholds
 - With a constant-only model, the two are equal

Threshold-independent

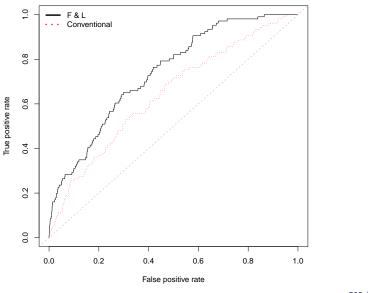
502 | Week N 24 / 30



25 / 30



25 / 30



502 | Week N 25 / 30

502 | Week N

26 / 30

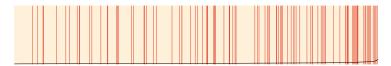
3. AUC

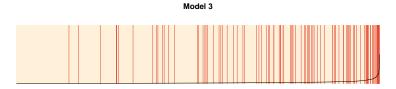
Area under the ROC curve: 0 - 1

- AUC for a constant-only model is <u>0.5</u>
- AUC for a "perfect" model is <u>1</u>

4. Separation plot

Conventional variables





Greenhill, Ward, & Sacks (2011)

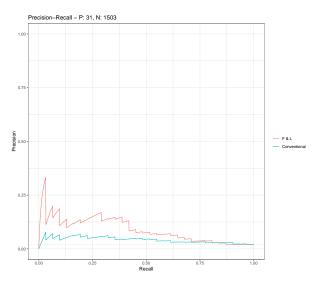
502 | Week N 27 / 30

4. Separation plot

In-Sample: Ethnic Violence Model

Out-of-Sample: Ethnic Violence Model

5. Precision-Recall Curve



502 | Week N 29 / 30

- Out-of sample prediction is a new way for evaluating the effect of proposed variable: in addition to the substantive effect
- A very common tool of analysis in the world of machine learning