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Chapter 9 Outline

• Two-Variable 
• Fitting a Line: Population ßà Sample
• Which line fits best? Estimating the regression 

line
• Measuring Our Uncertainty about the OLS 

Regression Line and parameters
• Assumptions, More Assumptions, and Minimal 

Mathematical Requirements
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Fitting a Line: 
Population ßà Sample

• Two-variable regression: fit the “best” line through a scatter 
plot of data

• This line, which is defined by its slope and y-intercept, serves 
as a statistical model of reality. 
– Q: Why draws a straight line? 
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Fitting a Line: 
Population ßà Sample

• Two-variable regression: fit the “best” line through a scatter 
plot of data

• This line, which is defined by its slope and y-intercept, serves 
as a statistical model of reality. 
– Q: Why draws a straight line? Because our brain can’t 

digest complicated relationships even though they are 
truer in our social lives. 
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Fitting a Line: 
Population ßà Sample

• Two-variable regression: fit the “best” line 
through a scatter plot of data

• This line, which is defined by its slope and y-
intercept, serves as a statistical model of reality. 

• You may remember from a geometry course the 
formula for a line expressed as Y=mX + b, where b 
is the y-intercept and m is the slope 

• For a one-unit increase (run) in X, m is the 
corresponding amount of rise in Y (or fall in Y, if m 
is negative). 

• Together these two elements (m and b) are 
described as the line's parameters.
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Population regression model
• In a two-variable regression model, we represent the y-intercept 

parameter by the Greek letter alpha (α) and the slope parameter by 
the Greek letter beta (β)
– Y is the dependent variable and X is the independent variable. 

• Our theory about the underlying population in which we are 
interested is expressed in the population regression model: 

𝑌! = 𝛼 + 𝛽𝑋! + 𝑢!
• Error term?
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Population regression model
• In a two-variable regression model, we represent the y-intercept 

parameter by the Greek letter alpha (α) and the slope parameter by 
the Greek letter beta (β)
– Y is the dependent variable and X is the independent variable. 

• Our theory about the underlying population in which we are 
interested is expressed in the population regression model: 

𝑌! = 𝛼 + 𝛽𝑋! + 𝑢!
• Error term: where 𝑢! is the stochastic or random component of our 

dependent variable. 
– We have this term because we do not expect all of our data points to 

line up perfectly on a straight line. 
• Thus we think about the values of our dependent variable 𝑌! as 

having a systematic component, 𝛼 + 𝛽𝑋!, and a stochastic 
component, 𝑢!.
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Sample regression model

• We rarely work with population data. 
• To distinguish between these two, we place 

hats (^) over terms in the sample regression 
model that are estimates of terms from the 
unseen population regression model. 

• Because they have hats, we can describe "𝛼 
and $𝛽	 as being ``parameter estimates.''
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Y-hat
𝑠𝑎𝑚𝑝𝑙𝑒	𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑚𝑜𝑑𝑒𝑙:	𝑌! = 1𝛼 +	 4𝛽𝑋! + 1𝑢! 	

• In the sample regression model, α, 𝛽,	and	𝑢! 	get hats, but 𝑌!  , and 𝑋!  do not. 
• This is because 𝑌!   and 𝑋!  are values for cases in the population that ended up in 

the sample. As such, 𝑌!   and 𝑋!  are values are measured rather than estimated.
• For each 𝑋!  value, we use 1𝛼 and 4𝛽 to calculate the predicted value of 𝑌!, which we 

call <𝑌!, where
<𝑌! = 1𝛼 + 4𝛽𝑋!

• This can also be written in terms of expectations,
𝐸(𝑌|𝑋!) = 1𝛼 +	 4𝛽𝑋!

• We can also write our model as
𝑌! = <𝑌! + 1𝑢!
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Residual

• 𝑌! = (𝑌! + )𝑢! can also be rewritten in terms of )𝑢! to get a better 
understanding of the estimated stochastic component:

)𝑢! = 𝑌! −	 (𝑌!
• The difference between the actual value of the dependent 

variable (𝑌!) and the predicted value of the dependent variable 
((𝑌𝑖)from our two-variable regression model. 

• Residual/error term: 
– Another name for the estimated stochastic component is the 

residual. “Residual” is another word for “leftover,” and this is 
appropriate, because !𝑢" is the leftover part of 𝑌" after we have 
drawn the line defined by $𝑌" = !𝛼 +	 )𝛽𝑋". 
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Residuals for the regression lines
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Which line fits best? Estimating 
the regression line

• In estimating a regression line, our task is to 
draw a straight line that describes the 
relationship between our independent 
variable X and our dependent variable Y. 

• We clearly want to draw a line that comes as 
close as possible to the cases in our scatter 
plot of data. 

• But how do we decide which line is best?
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Scatter plot of change in GDP and 
incumbent-party vote share
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Three possible lines
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Which line is “best?”
• One possibility is to add together the absolute value of 

the residuals for each line:
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• Another possibility is to add together the squared 
value of each the residuals for each line:
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• With either choice, we want to choose the line that has 
the smallest total value.
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Measures of total residuals for 
three different lines

• B does a better job of fitting the data than lines A and C
• Although the absolute-value calculation is just as valid as the squared 

residual calculation, statisticians have tended to prefer the latter (both 
methods identify the same line as being ``best''). 

• Thus we draw a line that “minimizes the sum of the squared residuals”
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• This technique for estimating the parameters of a regression model is 
known as ``ordinary least-squares'' (OLS) regression.

16



OLS parameter estimates
• For a two-variable OLS regression, the formulae for the parameter 

estimates of the line are:

• How do we derive these estimands? 
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OLS parameter estimates
• For a two-variable OLS regression, the formulae for the parameter 

estimates of the line are:

• How do we derive these estimands? Ans: Calculus
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OLS parameter estimates
• For a two-variable OLS regression, the formulae for the parameter 

estimates of the line are:

• How do we derive these estimands? 
• Numerator: If we examine the formula for 𝛽, we can see that the 

numerator is the same as the numerator for calculating the covariance 
between X and Y. 
– Thus the logic of how each case contributes to this formula is the same. à 

shows the direction of relationship
• Denominator: The denominator in the formula for )𝛽 is the sum of squared 

deviations of the 𝑋"	values from the mean value of X ( 2𝑋). 
– Thus, for a given covariance between X and Y, the more (less) spread out X is, 

the less (more) steep the estimated slope of the regression line. 
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Measuring Our Uncertainty about 
the OLS Regression Line

• With an OLS regression model, we have 
several different ways in which to measure 
our uncertainty. 

• There are two uncertainties: which two?
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Measuring Our Uncertainty about 
the OLS Regression Line

• With an OLS regression model, we have several 
different ways in which to measure our 
uncertainty. 

• There are two uncertainties: which two?
• We discuss these measures 1) in terms of the 

overall fit between X and Y first and 2) then 
discuss the uncertainty about individual 
parameters. 

• Our uncertainty about individual parameters is 
used in the testing of our hypotheses.
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Goodness-of-Fit: 
Root Mean-Squared Error (RMSE)

• Uncertainty about the “model”: goodness-of-fit
• Measures of the overall fit between a regression model and the 

dependent variable are called “goodness-of-fit measures.” 
• One of the most intuitive of these measures is root mean-squared error 

(RMSE):

• The squaring and then taking the square root of the quantities in this 
formula are done to adjust for the fact that some of our residuals will be 
positive and some will be negative. 

• RMSE is particularly useful in evaluating prediction accuracy
– E.g. Our model is off by 4.95 points in predicting the DV (percentage of the 

incumbent party’s vote share)
– You need a comparison set (compared to what?)
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Goodness-of-Fit: 
R-Squared Statistic

• Another popular indicator of the model's goodness-of-fit is 
the R-squared statistic (typically written as 𝑅B). 

• The 𝑅B statistic ranges between zero and one, indicating 
the proportion of the variation in the dependent variable 
that is accounted for by the model. 

• The formula for total variation in Y (areas a and b in the 
Venn diagram figure, also known as the total sum of 
squares (TSS), is

• The formula for the residual variation in Y, area a, that is 
not accounted for by X, called the residual sum of squares 
(RSS), is
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Venn diagram of variance and 
covariance for X and Y
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Goodness-of-Fit: 
R-Squared Statistic

• Once we have TSS and RSS two quantities, we can 
calculate the 𝑅0 statistic as

• The formula for the other part of TSS that is not the 
RSS, called the model sum of squares (MSS), is

• This can also be used to calculate R2 as
 

• E.g. Our model explains 33% of the variation in our DV. The larger, the better
• Again, you need a comparison set
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Uncertainty about the “Parameter 
Estimates”

• In Chapter 7 we discussed how we use the normal 
distribution (supported by the central limit theorem) to 
estimate confidence intervals for the unseen 
population mean from sample data. 

• We will use the same concept to estimate uncertainty 
in parameters

• The formulae for estimating confidence intervals are

• where the value for t is determined from the t-table 
such as the one provided in Appendix B.
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Traditional OLS hypothesis testing

• Slope estimate: Although we can test hypotheses about either the slope 
or the intercept parameter, we are usually more concerned with tests 
about the slope parameter. 

• We build a null hypothesis and an alternative hypothesis
• 3𝐵 = 0:	In particular, we are usually concerned with testing the hypothesis 

that the population slope parameter is equal to zero à a flat line  
– A flat line means no covariation between X and Y

• The logic of this hypothesis test corresponds closely with the logic of the 
bivariate hypothesis tests introduced in Chapter 7. 
– We observe a sample slope parameter, which is an estimate of the population 

slope.
– Then, from the value of this parameter estimate, the confidence interval 

around it, and the size of our sample, we evaluate how likely it is that we 
observe this sample slope if the true but unobserved population slope is equal 
to zero. 

– If the answer is “very likely,” then we conclude that the population slope is 
equal to zero.
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Two-Tailed Hypothesis Tests
• The most common form of statistical hypothesis tests about the 

parameters from an OLS regression model is a two-tailed 
hypothesis test that the slope parameter is equal to zero. 

• It is expressed as

• where H0 is the null hypothesis and H1 is the alternative hypothesis. 
• Note that these two rival hypotheses are expressed in terms of the 

“slope parameter” from the population regression model. 
• To test which of these two hypotheses is supported, we calculate a 

t-ratio in which 𝛽 is set equal to the value specified in the null 
hypothesis (in this case zero because H0 :	𝛽=0), which we represent 
as 𝛽*:
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The Relationship between “Confidence 
Intervals” and “Two-Tailed Hypothesis Tests”

• These two methods for making inferences are 
mathematically related to each other. 

• We can tell this because they each rely on the t-
table. 

• The relationship between the two is such that, if 
the 95% confidence interval does not include a 
particular value (e.g., 0), then the null hypothesis 
that the population parameter equals that value 
(a two-tailed hypothesis test) will have a p-value 
smaller than .05.
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One-Tailed Hypothesis Tests
• Most political science hypotheses are that a parameter is either positive or negative 

and not just that the parameter is different from zero.  This is what we call a 
``directional hypothesis.'' 

• When our theory leads to a directional hypothesis, it is expressed as

• H0: B = 0
• H1: B > 0 or B < 0

• where H0 is the null hypothesis and H1 is the alternative hypothesis. 

• As was the case with the two-tailed test, these two rival hypotheses are expressed 
in terms of the slope parameter from the population regression model. 

• To test which of these two hypotheses is supported, we calculate a t-ratio where 𝛽 
is set equal to the value specified in the null hypothesis, which we represent as 𝛽*	

• The	One-tailed	test	is	easier	to	achieve	statistical	significance	than	the	two-
tailed	test	because	the	rejection	region	is	wider,	but	political	scientists	most	of	
the	time	still	use	two-tailed	even	though	their	hypothesis	is	directional	
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OLS Assumptions about the 
Population Stochastic Component 𝑢!
• The most important assumptions about the population stochastic component 𝑢!  

are about its distribution. These can be summarized as
𝑢! ∽ 𝑁(0, 𝜎2)

• which means that we assume that 𝑢!  is distributed normally (∽	N) with the mean 
equal to zero and the variance equal to 𝜎2.

• This compact mathematical statement contains three of the five assumptions that 
we make about the population stochastic component any time we estimate a 
regression model: 
1. u!	Is normally distributedà so we can use t-statistics (central limit theorem and the 68-95-

99 rule) 
• Often violated

2. E(𝑢")=0: (zero mean error) zero bias for “in average” prediction; 
• no omitted variables à often violated

3. u! has variance σ2: Homoscedasticity; each unit has the same variance (E.g. violated if some 
elections are harder; clusters)
• Often violated

4. cov(𝑢" , 𝑢#)=0 ∀ 𝑖 ≠ 𝑗 : no spatial and temporal autocorrelation
• Often ignored

5. X values are measured without error
• We assume any variability from our regression line is due to the random component μ and not to 

measurement problems in X.
• E.g. Real GDP per capita
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Assumptions about Our Model 
Specification

• We have the correct model specification
– No Causal Variables Left Out; No Non-causal 

Variables Included 
– Parametric linearity: monotonicity
• One unit increase in the change of GDP leads to 10% 

increase in the probability of conflict (across all x 
values)
• Is it true in reality?
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Minimal Mathematical Requirements

• For a two-variable regression model, we have 
two minimal requirements that must be met 
by our sample data before we can estimate 
our parameters.

• We will add to these requirements when we 
expand to multiple regression models. 
– X Must Vary
– n > k
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